

Emulsion Polymers Consulting and Education, LLC

An international consulting group with offices in the USA (New Hampshire) and Canada (Ontario) Corporate office: 39 Nute Road, Madbury, NH 03823-7500 USA www.epced.com

the wisdom of experience, the power of knowledge

Tutorial Outline for Surfactant Adsorption

- 1. Molecular nature/characteristics for surfactants (anionic, cationic, non-ionic)
- 2. Surfactants in aqueous systems
 - a. CMC (Critical Micelle Concentration) and variation with Temperature and Ionic Strength (IS)
 - b. Measurement techniques for CMC
- 3. Surfactant adsorption onto latex particles
 - a. How do surfactant molecules adsorb on the polymer surface?
 - •Adsorption/desorption molecular dynamics
 - b. How much surface area does each molecule cover (A_S)?
 - 1.) A_s values at saturation (equilibrium coverage)
 - 2.) Partial saturation adsorption isotherms
- 4. DLVO theory and applications/insight
 - a. Critical coagulation concentration (CCC) and Ionic Strength (IS)
 - b. Definition of Zeta Potential
- 5.Effect of copolymer composition at particle surface
 - a. Non-acid monomer containing systems
 - 1.) Polar/non-polar copolymers (e.g. MMA/BA)
 - 2.) Effects for composite particles (two different polymer interfaces exposed)

- 3.) Adsorption on latex blends (2 latexes with different polymer polarities)
- 4.) Effects of initiator end groups
- b. Acid monomer containing systems (AA, MAA, etc.)
 - 1.) Acid content at surface of particles
 - •Surface region vs. COOH actually "on surface"
 - •Measurement techniques
 - 2.) pH dependencies with acid at surface
 - •E.g. what happens during neutralization (COOH \rightarrow COO-)
- 6. Non-ionic surfactants
 - a. Various types of non-ionics
 - •Effect of molecular weight (gel formation, bridging flocculation, etc.)
 - b. Anionic/non-ionic systems
 - •Competitive adsorption at polymer surfaces