<u>Scale-up and Commercial Production of</u> <u>Emulsion Polymers</u>

Session 1

- Basics of creating and characterizing synthetic latices
 - 1. Particle nucleation and growth
 - 2. Control of particle size distribution
 - Control of copolymer composition, MW, gel content
 - 4. Functional additives (esp. vinyl acids) and neutralization
 - 5. Colloidal stability
 - 6. Latex rheology, especially at high solids content
 - 7. Measurement of particle size, chemical composition, glass transitions, MFFT, acid distribution

Session 2

- Reaction process alternatives
 - 1. Batch reactors
 - *Ab initio* particle nucleation (I), growth (II) and final (III) periods
 - "Seeded" polymerizations
 - Copolymer composition drift, surfactant and initiator demands
 - Heat evolution profiles and heat transfer requirements
 - 2. Semi-batch reactors
 - Comonomer feed strategies (constant/variable rates, power feeds)
 - Effective monomer concentration in particles
 - Surfactant and initiator demands
 - Heat transfer requirements
 - 3. Continuous reactors
 - o Residence time considerations
 - Number and size of reactors in series
 - 4. Temperature control characteristics of reactors
 - Jacketed reactors, cooling water limitations
 - Reflux operations, vapor velocity
 - Cooling capacity of monomer/emulsion feed streams

Session 3

- Concepts and issues of scale up
 - 1. Comparisons of small and large reactors
 - Surface to volume ratio
 - Radial and vertical mixing
 - Potential for temperature and concentration gradients
 - 2. Dynamic similarity considerations of reactors
 - 3. Issues related to process type (batch, flooded, starve fed)
 - Reaction rate/time profiles, heat evolution
 - Free monomer content within reactor and vapor pressure
 - Phase distribution of functional monomers
 - Reactor entry point for monomer/emulsion feed stream

Session 4

- Fluid mixing characteristics and issues in large reactors
 - 1. Agitator types and purposes, tip speeds
 - 2. Fluid behavior near agitator blades
 - 3. Velocity distributions within the reactor
 - Effect on dispersing incoming monomers
 - Effect on energy transport to reactor walls
 - Computational fluid dynamics (CFD)
- Positioning feed stream entry points
- Agitator power requirements during reaction

Session 5

- High solids latex production
 - 1. Optimization of polymer production capacity
 - 2. Latex viscosity and heat transfer
 - 3. Optimal particle size distribution
 - 4. Post-reaction neutralization of vinyl acid functional additives
 - Maximum concentration of base
 - Feed rate of base addition

Session 6

- Residual monomer reduction chemical and physical alternatives
- Avoiding secondary nucleation, particle aggregation and coagulum in scale-up
- Sensors for off/on-line measurements latex surface tension and conductivity
- Scale-up criteria what works best for different types of latices
- Identifying potential "show stoppers" or critical issues in a polymerization process
- Concepts in process *scale-down*
 - 1. Designing lab and pilot scale experiments to investigate problems encountered in commercial scale operations
 - 2. Identifying potential large scale problems while still at the small scale
- Problem solving
- Conclusion of workshop