Hybrid Latex Systems – PU/Acrylic, Alkyd/Acrylic and Inorganic/Organic Latices

<u>Day 1</u>

AM:

- Basics of emulsion polymerization
- Particle size control
- Copolymer composition control
- Colloidal stability
- Dispersion rheology
- Mini-emulsion polymerization techniques
- Introduction to Pickering Emulsions
- Characterization of latices and other dispersions

PM: Organic/inorganic hybrid particles

- Why incorporate inorganics into latex particles?
- Morphological control (thermodynamic vs. kinetic)
- Making organic/inorganic hybrid particles
 - Emulsion polymerization
 - Mini-emulsion polymerization
 - Dispersion polymerization
 - Heterocoagulation
- Various organic/inorganic hybrid particles
 - Polymer/silica hybrid particles
 - ✓ Core-shell particles
 - ✓ Pickering stabilization
- Polymer/clay hybrid particle
 - ✓ Clay encapsulation
 - ✓ Clay-armored latex particles
- Polymer/CNT hybrid particles
- Magnetic hybrid particles
- Other organic/inorganic hybrid particles
 - Stimuli-responsive organic/inorganic hybrid particles
 - Polymer/metal hybrid particles
- Film formation of organic/inorganic hybrid particles
- Properties of coatings from organic/inorganic hybrid particles

Day 2

AM: Alkyd/Acrylic Latex Particles

- What is an alkyd/acrylic hybrid? How is it different than other polymer/polymer hybrids?
- Incentives for an alkyd/acrylic hybrid latex
 - synergy of properties from solvent borne and waterborne coating systems
 - no VOC
- Brief background of solvent borne alkyd coatings
- Alkyds: chemistry, structures, fatty acid constituents, double bond content & degree of unsaturation
- Alkyd/Acrylic Hybrid Latex
 - Hydrophobicity of alkyd precludes its use in traditional emulsion polymerization
 - Miniemulsion polymerization
 - applicability to this system and typical procedures
 - Hybrid particle morphology
 - Target morphologies
 - Thermodynamic vs. kinetic control
 - Characterization
 - Challenges/constraints
- Grafting of alkyd & acrylic phases
 - Mechanisms
 - Characterization
 - Implications
- Kinetics of Acrylic Polymerization in Presence of Alkyd
 - Retardation
 - ✓ Function of type of alkyd used
 - Limiting monomer conversion
 - ✓ What is this? What levels of unreacted monomer?
 - ✓ Theories as to why this occurs in this type of system
 - Methods to overcome and finish the residual monomer
 - Film formation of alkyd/acrylic latex
 - Auto-oxidative cross linking of alkyd residual double bonds with drying oils
 - No drying oil added
- Properties of alkyd/acrylic latex films

PM: Polyurethane/Acrylic Hybrid Latex Particles

- > Aqueous polyurethane dispersions
- VOC driving force
- Types of PU's that are useful as PUD's
 - Creating PUD's • Chemistry, stabilization Dispersion process, particle size control
 - Use of NMP and other solvents
 - Hydrogen bonding, hard segment nanodomains
 - Water content in PU particles
- Film applications
- Coating properties

> PU/Ac hybrid latex particles

• Driving force

•

- Types of acrylics of interest
 - Morphological alternatives
 - Thermodynamic control'
 - Kinetic control
- Polymerization processes
 - PUD as "seed" particles, pH control
 - Batch and semi-batch acrylic polymerization
 - o Reaction kinetics, including starve fed
 - ✓ Initiator systems
 - ✓ Reaction temperature ranges
 - Establishing phase structure in PU/Ac composite particles
 - Effect of annealing
 - Hydrogen bonding issues
- Properties of composite films
 - \circ PUD Ac latex blends
 - PU/Ac composites