<u>Rheology Fundamentals & Applications</u> <u>for Synthetic Latices and Associated</u> <u>Coating Formulations</u>

<u>Day 1</u>

- AM: 8:30 AM to Noon
 - Basics of creating and characterizing synthetic polymer latices
 - 1. Particle nucleation and growth
 - 2. Control of polymer composition, MW, gel content
 - 3. Functional additives (esp. vinyl acids) and neutralization
 - 4. Colloidal stability
 - 5. Measurement of particle size, glass transitions, MFFT, acid distribution
 - Basics of fluid rheology, including polymer solutions
 - 1. Newtonian, shear-thinning, shearthickening fluids
 - 2. Thixotropy, rheopexy
 - 3. Viscoelasticity
 - 4. Shear versus extensional deformation
- PM: 1:15 to 5:00 PM
 - Rheology of simple dispersions (volume fraction, particle size, temperature)
 - Non-Newtonian behavior, structure development at high volume fraction
 - Rheology of bimodal and multimodal dispersions
 - Introduction of non-spherical particles

<u>Day 2</u>

AM: 8:30 AM to Noon

- Latex particle-particle interactions, DLVO approach, water soluble materials inherent in latex polymerization
- Surface region of latex particles, hairy layers, effective size
- Role of "functional additives" (e.g. vinyl acids), neutralization, polyelectrolytes, water swelling of latex particles
- Formulated systems
 - 1. Binders, pigments and fillers
 - 2. PVC, CPVC, NVV
 - 3. Coating life—cycle

<u>Day 2</u>

- **PM**: 1:15 to 5:00 PM
 - Coating ingredient effects on rheology
 - 1. Simple thickeners, rheology modifiers
 - 2. Associative thickeners
 - 3. Dispersants and others additives
 - 4. Interaction with latex surfactants
 - Mixing and storage of formulated latex products
 - 1. Mechanical effects
 - 2. Heat-thaw effects
 - 3. Phase separation (syneresis), entropic flocculation

<u>Day 3</u>

AM: 8:30 AM to Noon

- Interactions between latex particles, pigments, fillers, and other additives
 - 1. Effects on coating formulation properties
 - 2. Effects on dry film physical properties
- Applying latex based dispersions
 - 1. Substrates effects
 - 2. Shear rates relevant to various application methods
 - 3. Extensional viscosity and normal stresses
- Flow and leveling after application

PM: 1:15 to 4:30 PM

- Film formation mechanisms
 - 1. Latex packing and particle
 - coalescence
 - 2. Single and multiple phase particles
 - 3. Coalescing aids
 - 4. Low and "zero" VOC formulations
- Applications to Latex paints, Paper coatings, Pressure sensitive adhesives, Sealants and Caulks
- Problem solving sessions throughout workshop
- Course summary and review